
J .  Fluid Mech. (1988), wol. 196, pp .  205-222 

Printed in Great Britain 

205 

On the wind force needed to dislodge a drop 
adhered to a surface 

By PAUL A. DURBIN 
PU’ASA Lewis Research Center, Cleveland, OH 44135, USA 

(Received 16 July 1987 and in revised form 7 April 1988) 

The dislodging by dynamic pressure forces of a drop adhered by surface tension to 
a plane is analysed. An integro-differential equation describing the drop shape is 
solved numerically and the critical Weber number as a function of contact angle 
hysteresis is found. 

1. Introduction 
A drop of liquid sitting on a plane surface will be held in place by surface tension 

(Batchelor 1967, $1.9). In the absence of external forces, the drop assumes a 
symmetrical shape. If a force with component tangential to the surface is now 
applied, the drop will be distorted into an asymmetrical shape. As the magnitude of 
the force is increased, the drop will be increasingly distorted until surface tension is 
no longer able to hold the drop and it begins to slide along the surface: an example 
of this occurs when a sufficiently large drop of water is put on a smooth surface which 
is inclined with respect to gravity. When the inclination becomes large, the drop 
cannot be held by surface tension and i t  moves down the surface. 

In  the present paper, the perturbing force is the surface pressure associated with 
wind flow over the drop. This pressure field is itself a functional of drop shape, so that 
the drop distortion is described by an integro-differential equation. However, if the 
air flow is inviscid and remains attached, a symmetric drop will produce a symmetric 
surface pressure distribution ; the drop will not be dislodged. I n  order to introduce 
asymmetry, our analysis will assume high-Reynolds-number free-streamline separa- 
tion from the drop. The leeward side of the drop is then at constant pressure and 
the pressure field is asymmetrical. Because of the analytical difficulty of determining 
the separated flow field and of solving the governing integro-differential equation, we 
consider here two-dimensional slender drops. 

The slender drop approximation entails replacing the normal to the drop by the 
normal to the solid surface: in many cases this is an adequate approximation. The 
restriction to two-dimensionality may be more discomforting, since most cases of 
interest involve three-dimensional drops. One expects the two-dimensional analysis 
to give some suggestion of what happens in three-dimensions because the forces 
governing the drop shape are the same. Its  greater tractability also makes the two- 
dimensional case a useful preliminary to a more involved three-dimensional analysis 
and, of course, it applies to quasi two-dimensional drops. 

By including only pressure forces, we are assuming that frictional drag can be 
ignored. This approximation must rely in some way on a high Reynolds number for 
its validity. The triple deck theory (Smith et al. 1981) shows that viscous and 
pressure forces become comparable when the drop height is of order Red times the 
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Free streamline 

FIGURE 1. Defining sketch 

boundary-layer thickness ; i.e. when the drop height is formally small compared to 
boundary-layer thickness. Therefore, the present analysis applies in the case when 
the drop height is comparable to, or greater than the boundary-layer thickness on the 
surface. This is the case in which the flow is severely separated, and form drag 
becomes predominant. Casual observation of water drops being blown off glass or 
mylar gives the impression that it is often true that the flow must be separated before 
a drag sufficient to dislodge the drop can be created. We intend to consider elsewhere 
the case of smaller drops for which pressure and viscous forces become comparable. 
The low-Reynolds-number limit, in which viscous surface stresses distort the drop, 
was considered by Dussan V. (1987). 

Because our analysis is inviscid, an ambiguity exists in the location of the 
separation point. In the present paper, the separation point is taken as a free 
parameter. It was first described by Sychev (1972) and Smith (1977) how viscous 
effects could be introduced in order to determine the separation point unam- 
biguously. In the present case, the thickness of the boundary layer approaching the 
drop would enter such a determination, and through this degree of freedom the 
separation point would remain a largely free parameter - viscous theory might 
conceivably place constraints on that freedom. 

As in Dussan V.’s study, adherence to the surface is characterized here by contact 
angle hysteresis. Thus, the advancing and receding contact angles parameterize the 
cohesion of the liquid to the surface. These angles are determined by the nature of 
the liquid, the solid surface and the ambient air (Batchelor 1967). The wind will 
deform a static drop until the upwind contact angle has been decreased to the 
receding contact angle, OR, and the downwind angle has been increased to the 
advancing contact angle, Oa (figure 1) .  This is the critical drop configuration; a 
slightly greater wind speed will dislodge the drop. It is this critical configuration for 
which we obtain solutions. The critical wind speed is characterized by a critical 
Weber number : 

Y 
(T 

where p is the density of air ; U is the wind speed far from the surface ; 0- is the surface 
tension a t  the air-liquid interface; and V* is the two-dimensional drop volume: 
obviously, for a three-dimensional drop the lengthscale would be V*i. 

2. Governing equations 
We will take the origin to be at the leading edge of the drop, and it will prove 

convenient to use the position of separation, x,, as our unit of length. At the end of 
the analysis we will revert to the lengthscale Vi used in (1).  The slender-body 
approximation, which linearizes the governing equations, results from taking e = 
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t(8, + 8,) to be small. For this reason we scale the drop height, 7, on 19. If superscript* 
denotes dimensional variables, then non-dimensional and dimensional quantities are 
related by 

P here is the constant pressure inside the drop: in the present high (air-flow) 
Reynolds-number limit, the lowest-order momentum balance inside the drop 
requires the internal pressure to be constant (see later discussion in $5). 

In  the critical configuration, a static balance exists between pressure and surface 
tension forces. Referring to figure 1, on the portion of the drop upstream of 
separation, the air pressure is determined by Bernoulli’s equation, which is linearized 
in the slender-body approximation as Pa = -Uu,, where us is the surface velocity 
perturbation due to the drop. An expression for the Bernoulli pressure is derived in 
the Appendix. The rear of the drop is adjacent to a constant pressure wake, which 
in free-streamline theory is at the ambient pressure, Pa = 0. The normal force on the 
drop surface is Pa - P, with P the constant internal pressure : this internal pressure 
will be determined as part of the solution. The surface tension force which balances 
the pressure difference, is equal to the curvature of the drop times the surface tension 
coefficient. I n  the slender-body approximation this curvature is just d2y/dx2 
(Batchelor 1967). 

Upon introducing the notation t(x) = dy/dx, the equations governing droplet 
shape are 

where w = pU2x,/ri is the Weber number based on separation distance and the 
integral in (3a) is a Cauchy principal value (Muskhelishvili 1953). This integral 
simply d.etermines the surface pressure produced by air flow over the portion of the 
drop upstream of separation. Because P, is zero within the separated wake (3b) 
obtains there. 

A derivation of the expression for Pa is given in the Appendix. It is shown there 
that (3) leads to the overall force balance 

between surface contact and wind drag, D. 
The surface height is given by 

V = v(x)dx, ( 5 )  1 and the drop volume is 

where L is the downstream end of the drop. Note that (see equation ( 1 ) )  w, = 
w(V’8); so that an evaluation of this last integral permits us to rescale our results 
on V;  instead of the artifical length x,. 
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The boundary conditions to (3) and (4) are that the drop height is zero a t  the 
downstream end of the drop, 

r (L)  = 0, ( 6 4  

and that the slope 5 is equal to the receding (minus the advancing) contact angle a t  
the upstream (downstream) end of the drop (see figure l ) ,  

t (0 )  = l - E ,  E(L) = -1--5, (6 b, c )  

where E = (0, - 0,)/2s is the scaled contact angle hysteresis. As discussed in Q 1, the 
separation position is unknown, and regarded as a free parameter. Because it has 
been scaled out of our equations, this degree of freedom is replaced in the analysis by 
an indeterminate surface slope, &, a t  the separation point : 

& enters our solution as a free parameter. 
The problem posed in this section is to solve (3) for [(x), P and w such that 

conditions (equations (6)) are satisfied. The curve ~ ( e )  describes the critical Weber 
number dependence on contact angle hysteresis. 

3. Solution 
The solution to equation ( 3 b )  with (6c) is 

t ( x )  = - l -E+P(L-x)  ( L  3 x 3 1) (7)  

This determines the drop length once the internal pressure has been found. The drop 
height in the separated region is found upon integrating (7)  with (6a) :  

r(x) = (l+e)(L-x)-$P(L-x)2 ( L  3 x 2 1) .  (9a) 

Using (S), the height at separation is 

Equation (9b) provides a boundary condition for the solution to (3a) in 0 < x < 1.  
The scaled drop volume is 

after the contribution (equation (9a)) from the separated region is evaluated 
explicitly. Given this solution in x 3 1, and its evaluation a t  x = 1, the droplet 
problem reduces to solution of equation (3a). 

An integro-differential equation similar to (3 a) is discussed by Muskhelishvili 
(1946, chapter 17). It appears from his discussion that no closed-form solution exists. 
For this reason, in the present paper numerical solution is resorted to. A brief, 
unsuccessful attempt at solution by a collocation method was abandoned in favour 
of a series expansion in powers of w. It was felt that this latter form of solution was 
more revealing. 
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Before proceeding with this expansion, let us rewrite (3a) as an integral equation 
for 7. If first, (3a) is integrated from x = 0 to 1, i t  is found that 

P = (l-s-E,)+- "[ ~ g(x) ,[2+(1-x)iln( l - ( l - X ) S  :)Id.. 
7t 0 (1-X)Z 1 + (1 -x)2 

Substituting this into (3a) and integrating that equation from x to 1 gives an 
equation for g. If x = 1 - y2 is substituted, this equation is 

Substitution of -2yC(y) = dy(y)/dy and a further integration from y to 1, yields an 
integral equation with 7 as dependent variable. It is clear from the first two terms 
on the right-hand side of (12) that 7 can be written as the sum of a term proportional 
to f and one proportional to (1 - E ) .  I n  our computations, 7 was found by summing 
two such terms. However, for the purpose of presentation, no such separation will be 
made, Instead, we write g, = ( ~ - E ) s ,  so that s is the separation slope scaled on 
OR, and introduce h(y) = y(y)/(l - E ) .  Then the integral equation governing the 
surface elevation can be written 

h(y) clearly is a linear function of s. Note that because y = 1 when x = 0, h( 1) = 0 and 
that (1-e)h(O) is given by (9b).  With s fixed, (13) determines h(y) in terms of the 
parameter w alone. Thus, it is convenient mathematically to solve (13) with w given 
and then to find the corresponding E from ( 9 b )  and (1 1). (Physically, one would think 
of the contact angle hysteresis, E ,  as the given which then determines the critical 
Weber number, w.) 

We also write P,  as determined by (ll),  in terms of h as 

P = ( 1 - E ) I ( W ) ,  (14) 

where 

All integrals have been written in convergent form. 
The solution to (13) and (15) will be expanded in powers of w as 

W 00 

h(y )  = r, w"h,(y), I = c WnI,. 
0 0 

(17) Clearly h - 1 1 -  - 2( y4) ++s(i - y 2 ) 2 ,  = 1 

and h, could be found simply in closed form. 

written symbolically as 
A finite truncation of (16) was evaluated by numerical integration. If (13) is 

h(y) = + ( ~ - Y ' ) + + S ( ~ - Y ~ ) ~ + W L ( Y ; ~ ) ,  (18) 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

h,(O) 

0.500 
0.707 x lo-' 
0.147 x lo-' 
0.328 x lo-' 
0.746 x 
0 . 1 7 0 ~  
0.389 x 

0.204 x 
0.467 x lo-' 
0.107 x 

0.891 x 10-5 

h,@) 

hn+,(O) 
0.707 
4.81 
4.48 
4.40 
4.39 
4.37 
4.37 
4.37 
4.37 
4.37 
__ 

TABLE 1. Coefficients in the Taylor series for h(0)  and the convergence of their ratio 

where L(y; 0 )  represents the operation on the right-hand side of (13), then 

h, = L(y ; (n  2 1). (19) 

This expression was evaluated recursively with the integrals on the right-hand side 
being computed numerically. 

Note that if a solution to the eigenvalue problem 

L(y; he) = h-lhp (20)  

exists with h > 1,  then it is likely that the iterative solutions to (19) will converge to 
a constant times h-"he( y) ,  when n + co . In  this event, h is the radius of convergence to 
(16) and information about the infinite series can be surmised from the numerical 
solution for a finite number of terms. Our numerical analysis suggests that  (20) has 
a solution with h = 4.37: the evidence is presented in table 1 and figure 2. Table 1 
shows numerical values of h,(O) for n < 11 and the ratio of h,(O) to h,+,(O) for the case 
s = 0. It is seen that the latter ratio converges rapidly to 4.37. Values in the table are 
rounded to 3 decimal places because this was the accuracy of the numerical 
integrations. Figure 2 shows numerical solutions for h,(s)/h,(z = 1) (recall that x = 
1 when y = 0). The curves for n = 8 and n = 10 lie almost atop one another, showing 
rapid convergence of the normalized h,(x) to he(x).  The coefficient of s in the solution 
for h,(z) also shows rapid convergence to a multiple of the same function he(%), as is 
shown by figure 2 (b).  

Once h(y  ; w)  has been computed, the contact angle hysteresis is found from (9b)  
with (14) : 

(21) 
(2h(O)I+s2)b- 1 

(2h{O)I+s2)~+ 1 .  
€ =  

For example, it is readily calculated using (1  7 )  that  

2w sw 
9n 9x 

2sw 

h(0) = ~+~s+-+++O(w2),  

1 = l-sS++O(w2), 
x 
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FIQURE 2. The even terms in the series (15) up to n = 10. This figure shows the rapid convergence 
to the eigensolution of (20). (a) is for s = 0 and ( b )  is the function which s multiplies. 

so one finds W 
E = (1 +4s+4s2)-+O(w2) ,  

9n: 
(82) 

when w + 0. This shows that when s = - 0 . 5 , ~  vanishes to the level of approximation 
given. From (A 6) of the Appendix it follows that the drag on the drop vanishes for 
this value of 5. Such occurrence signifies that the assumption of a free-streamline 
wake extending to downstream infinity cannot be maintained ; for values of s less 
than -0.5 the wake must be closed (Cheng & Smith 1982). For general values of w 
the drag vanishes a t  some value of 5 ,  which is the minimum separation slope for 
which an infinite wake can be maintained. 

One sees by figure 2 that if one writes h = h, + sh, the terms in the series (equation 
(16)) for h, and h, are all positive, so from the discussion below equation (20), 
h(0;  w )  and I ( w )  diverge like (w-A)-l a t  w = A. Then 

E = l+O(w-A) (23) 

when w + A. As a consequence of (83), (1 -c )  times I or h is finite when w A,  and 
therefore P and 7 remain bounded a t  w = A. Hence, the radius of convergence is 
where the contact angle hysteresis becomes unity, so that the receding contact angle 
is zero, and all physical variables are finite there. Because the receding contact angle 
must be greater than zero, A is the maximum value which a critical Weber number 
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FIQURE 3. Drop shape, scaled to have unity volume, for values of w labelled, calculated by 
summing 11 term Taylor series. (a )  is simply a sum of the 11 terms. (b )  is calculated using the 
approximation (equation (24)) to a sum of the infinite series. The dashed line shows the asymptotic 
drop shape at  the radius of convergence, w = 4.37. 

can take. Thus, we have the surprising result that when c +  1,  the critical Weber 
number becomes independent of s. This occurs because a t  the radius of convergence, 
the operator L in (18) dominates the non-homogeneous term. The eigenfunction has 
zero slope a t  separation, so the convergence of 7 to re is non-uniform in a small region 
around separation. 

4. Results 
4.1. The case s = 0 

When s = 0 separation occurs at the top of the drop. One might expect that for large 
drops, separation takes place near the top. Of course, this intuition is based on drops 
to which the slender-body approximation would not apply. Nevertheless, the case 
s = 0 serves to illustrate the present solution. Results for other values of s are 
presented later. 

The drop shape was computed for various w by summing 11 terms in the series 
(equation (16)) using the numerical evaluations of h, displayed in figure 2 (plus those 
for odd a), with amplitudes given in table 1 : the result is plotted in figure 3 (a). The 
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FIGURE 4. Critical Weber number versus contact angle hysteresis. 

numerical integrations required to solve (19) were done by the trapezoidal rule with 
Ay = &. I n  principle, the rapid convergence of hn to he permits an approximate 
evaluation of the infinite series (equation ( 1 5 ) )  : 

This improved formula was used in figure 3 (b) .  It is seen that the last term in formula 
(24)  becomes significant in the case with w = 3.6.  The dashed curve in figure 3 ( b )  
shows the asymptotic shape when w - t h .  This shape is approached for non-zero 
values of s as well. 

Figure 3 is normalized so that all curves have unity area (also recall the scaling, 
equation (2)). The origin of each curve has been shifted to x = 0 . 0 7 5 ~  solely for the 
purpose of display. Beginning with the symmetric shape when w = 0, increasing wind 
speed increases asymmetry. Because the airflow stagnates on the front edge of the 
drop, Pa is high there and the droplet curvature becomes negative (actually, the 
curvature has a logarithmic singularity a t  x = 0, in consequence of the slender-drop 
approximation). Proceeding over the drop, the air accelerates, producing suction 
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FIGURE 5. Internal drop pressure and drop length versus contact angle hysteresis. 

(relative to the internal pressure) a t  the crest of the drop; hence, the crest is drawn 
up. The leeward side of the drop is simply a constant curvature segment, given by 
expression (9a) .  

Equation (21) was used to evaluate the contact angle hysteresis as a function of 
critical Weber number. For this purpose, an 11 term expansion for h(0;  w) and I ( w )  
was used, with a correction for the rest of the infinite series as in the summation 
formula (equation (24)). Once e was calculated for a given w, equations (S),  (10) and 
(14) were used to evaluate V ,  L ,  and P.  

In figure 4 we show the resultant curves of Weber number versus E .  Three forms 
of Weber number are shown, differing in the lengthscale used: w is based on the 
distance to separation ; w V; is based on drop volume ; and wL = w L is based on drop 
length. Equation (22) gives the asymptotic behaviour w+9ne when E + O ,  and this 
is shown in the figure. Also V+g and L + 2  when e+O, which determines the 
behaviour of the other curves near the origin. It is seen that the small e 
approximation is reasonably accurate for w < 0.8, but this corresponds to e < 0.03, 
so the approximation is applicable only to  quite small contact hysteresis. 

From the numerical series, reasoning as in equation (24), we find that as 
w + h = 4.37. 

0.27 0.42 
I +  
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approximately. Hence, 

Figure 5 shows that with increasing contact angle hysteresis, the internal pressure 
a t  critical conditions rises and the scaled length of the drop decreases (i.e. its 
thickness increases). The increased thickness is consistent with the crest of the drop 
being drawn up by suction, but the increase of P might be surprising. Presumably, 
the low pressure a t  the crest is balanced primarily by surface tension through 
increased curvature, while the rise of internal pressure largely balances the high air 
pressure in the stagnation region. Ostensibly, this latter is why the curvature is not 
more negative on the front of the drop. 

If one places a drop of water on a sheet of glass and blows tangentially to the 
surface, the drop is distorted towards the shape shown by the dashed line in figure 
3. One sometimes observes that the drop has a thin tail on the upstream side. When 
the drop contracts from its initial length, as the wind begins to blow, the downstream 
side remains fixed and the upstream side moves downstream. The tail, then, is a 
residue left behind during this contraction and the bulk of the drop is as in figure 3. 
One also sometimes observes temporal oscillations of the drop surface. These are 
likely to be due to a shear flow instability of the separated wake (R. J. Hansman and 
S. R. Turnock, private communication 1987). 

4.2. Other values of s 

Figures 6 ( a ) ,  (b )  and ( c )  show evaluations of critical Weber numbers versus contact 
angle hysteresis for various values of s. When s --f 0, L + 2 / (  1 - s ) ,  which becomes 
large when s+ 1. This is why the curve in figure 6 ( b )  with s = 0.75 crosses that with 
s = 0.5 a t  small E .  Recall that s is the separation angle divided by the receding 
contact angle. Thus when s+O, were s = 1,  separation would occur at the leading 
edge of the drop ; but then the drop would lie entirely within the constant pressure 
separated region, and the wind would be unable to dislodge the drop. 

Because lengths were normalized by x,, when the separation point moves to the 
leading edge, L-t 00 and P-t  0. For general values of E ,  the criterion P = 0 gives the 
maximum value which s can take: for small w, setting I = 0 above ( 2 2 )  gives this 
maximum. In discussing Brillouin point separation in $5, it will be seen that a more 
stringent upper bound on s exists. As discussed in connection with ( 2 2 ) ,  a minimum 
slope exists for which the wind drag, and hence E vanishes. In  figure 6 this slope is 
determined as a function of Weber number by the intersections of the curves with the 
E = 0 axis. For the present analysis to be valid s must lie between these minimum and 
maximum values. 

I n  order to illustrate the dependence of drop shape on s ,  we include in figure 7 
curves of v(x /  V:)/ V i  for s = -0.5, 0 and 0.5 with w = 3. 

When the Weber number is less than critical, the present analysis would describe 
the deformation of the drop by air flow. In  this case, the leading edge (B(0)) and 
trailing edge (B(L)) angles would have to be determined as functions of w. Thus, 
instead of determining critical Weber number as a function of given contact angles, 
as done here, the contact angles would be determined as functions of a given Weber 
number. If E is redefined below equation (6) with B(0) and B(L) replacing OR and 
OA, the present analysis determines E(w) .  In  order to determine B(0) and B(L) 
individually, a further relation is required. The relation we propose is that the 
average of these angles be a fixed constant, equal to the previously defined @. The 
reason for this proposal is as follows. If a drop is sitting on a flat plate oriented 
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FIGURE 6 ( a ,  b ) .  For caption see facing page. 
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FIGURE 6.  Critical Weber numbers versus contact angle hysteresis for values of s labelled 
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FIQURE 7. Comparison of drop shapes when s = -0.5, 0 and 0.5 for w = 3. 
X I  vt 

perpendicular to a gravitational field, the balance of forces on the drop surface, in the 
direction normal to the plate is 

@in O(0) +sin O(L)) = - PL +Mg, (26) 

where variables are dimensional and M is the mass (per unit length) of the drop. If 
the plate is accelerated downward, g is effectively reduced and the balance of forces 
can be maintained either through reduction of internal pressure, or through change 
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of contact angle. The traditional argument leading to the concept of contact angle 
(Batchelor 1967, 51.9) allows no dependence on gravity; surface tension forces are 
produced by molecular attraction. Thus, we propose that the left-hand side of (26) 
is unaffected by the applied force (which in the present paper is aerodynamic lift). 
This means that the normal component of the weight of the drop is supported 
entirely by the surface on which it rests, with no assistance from surface contact 
forces. This argument is clouded somewhat by the fact that the tangential 
component of weight must be supported by surface contact. In  the slender-body 
limit, our hypothesis means that 

;(e(o) +B(L))  = s, (27 1 
where e is a known constant. 

5. Discussion on the relation to viscous theory 
In 8 1 ,  we commented on the ability of high-Reynolds-number viscous theory to 

provide a relation between the separation point and the thickness of the boundary 
layer approaching the drop. I n  general, the present analysis could be set in the 
context of viscous theory. To do so, lengths would be non-dimensionalized by the 
distance upstream of the drop over which the boundary layer grows; on a flat plate 
this would be the distance to the leading edge. The air-flow Reynolds number, Re, 
based on this length would be considered asymptotically large. 

In  addition to Re, the ratio, ,u,v,/,uudvd, of kinematic times dynamic viscoscities 
of the air to the liquid enters the scaling. If this ratio is taken to be sufficiently 
small, the liquid motion is governed by the creeping flow equation, -dP/dx = 
Rec1a2u/az2. If the drop height is sufficiently large, the viscous term cannot balance 
a lowest-order pressure gradient, so the internal drop pressure must be constant. 

If the drop height is reduced, pressure gradient and viscous forces can become 
comparable. However, because the viscous stress is continuous across the drop 
surface, these forces are also in balance within a region comparable to the drop height 
in the air flow over the drop. This means that viscous displacement of the boundary- 
layer flow over the drop by the secondary boundary layer generated on the drop, is 
comparable to geometrical displacement by the drop height. But this is precisely the 
condition that leads to an interactive boundary layer. Thus, the case in which viscous 
stresses contribute equally with pressure forces to dislodging the drop, is that in 
which the boundary layer also becomes interactive. The triple-deck theory (Smith 
et at. 1981) provides a systematic derivation of nonlinear equations governing this 
case. Thus, the drop length would be taken to  be O(Re-i) and a would be O ( R e d )  as 
Re --f co . In  order for surface tension to balance the normal force jump across the drop 
surface, the Weber number based on distance to the leading edge must be O(Rei) ; 
correspondingly, the Weber number based on drop dimensions would be O(1). 

Smith et al. (1981) speculate that in the large height limit (or large drop volume 
limit presently) the free-streamline, slender- body theory emerges from the nonlinear 
triple-deck problem, with a definite separation point. For the present drop problem, 
surface tension forces contribute to determining this separation location. 

Cheng & Smith (1982) describe an alternative scenario (which could be that which 
emerges from the triple-deck limit) in which the separation location on a slender 
body is determined by high-Reynolds-number viscous theory. In  their scaling, the 
drop length would be 0(1 )  and s would be O ( R e d ) .  The separation now is provoked 
by viscous effects in a triple-deck region around the separation point, with length of 
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FIGURE 8. Slope a t  separation versus contact angle hysteresis for Brillouin point separation. 

O(Re-%). In this event, surface tension forces can play no role in the separation. Cheng 
& Smith’s equation ( 3 . 2 ~ )  provides a linear relation between s and the parameter 

where ,8 and A, are constants and d is the distance to the leading edge of the boundary 
layer. Through the dependence on d ,  this relation permits s to vary over a range of 
values, as we have allowed it to do. However, a new feature now arises : we found that 
the coefficient of s in Cheng & Smith’s equation vanished when w NN 3.3.  At this value 
of w, s becomes infinite, e becomes unity, and all physical variables remain finite. 
Hence, 3.3 becomes a new maximum critical Weber number, which is attained for 
liquid, solid interfaces with zero receding contact angle. 

The separation point ambiguity also could be removed by the classical Brillouin 
criterion (Sychev 1972) if O(1) drops, to which the slender-body approximation no 
longer applies, are considered. The Brillouin criterion is that the separation is a t  that 
point for which the pressure gradient is not singular. In  general the fully nonlinear 
equations for the free-streamline, and drop curvature, must be solved, but in the case 
of thin drops, the slender-body equations emerge. In  this case, to lowest order in 
Re-l, the thickness of the upstream boundary layer has no influence on the location 
of separation. However, Sychev (1972) showed that viscous effects can cause the 
separation point to move an O(Re-h) distance from the Brillouin point ; for practical 
Reynolds numbers, this is effectively an O( 1) distance, so the Brillouin criterion is not 
compelling. Nevertheless, it provides a unique and reasonable location for the 
separation point. The Brillouin condition is invoked by choosing s such that the 
integral in (A 4) vanishes a t  x = 1,  thereby making the pressure gradient non- 
singular (for small w this gives s = 0.5). The resulting values of s versus e are 

0 FLJl  (96 
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FIGURE 9. Critical Weber numbers for Brillouin point separation. 

presented in figure 8. On this curve L is finite, and in fact decreases from its value 
of 4 as s increases from 0.5. Because the drag is also positive, these separation slopes 
lie within the acceptable range. When w + 3.3, s+ co and E +  1 ,  as was discussed 
previously. Curves of critical Weber number for Brillouin point separation are 
displayed in figure 9. 

In the classical free-streamline theory, it is observed that were the separation point 
upstream of the Brillouin point, the free-streamline would enter the surface. In the 
present case, in order to avoid this, a t  each value of E acceptable values of s must be 
less than those shown in figure 8. (Note that the curve for s = 0.75 in figure 6 is 
therefore invalid at the smallest values of E . )  

Figure 10 illustrates droplet shapes for a few cases of Brillouin point separation. 

FIGURE 10. Drop shapes for Brillouin point separation for Weber numbers shown. 
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Appendix. The formula for Pa 
We wish to derive the surface pressure associated with free-streamline separation 

in the slender-body limit. This could be done by invoking the full free-streamline 
theory (Milne-Thompson 1968 5 12.40 ff.) and linearizing the conformal mapping. 
However, the method described below produces the same result. Hence, it describes 
the situation depicted in figure 1 in the slender-body limit. The flow outside the wake 
is irrotational and the wake is bounded by a vortex sheet. 

External to the separation region, the air motion is given by potential flow. Thus, 
in the slender-body approximation the air pressure satisfies Laplace’s equation. If z 
is the coordinate normal to the surface, the condition of flow tangency and the z- 
momentum equation give the boundary condition, 

where z = y,(x) is the equation of the separation streamline. The boundary value of 
the harmonic function satisfying (Al )  and tending to zero as z tends to infinity, is 
(Muskhelishvili 1946) 

The condition of free-streamline separation, Pa = 0; x > 1, applied to (A 2 )  provides 
an integral equation for y,(x). If tangential separation, dys(l)/dx = dy(l)/dx, is 
required, then the solution for y,(x) is 

dy, - (x- 1); J: ((x’)dx’ 
(x 2 11, - - _  

dx x (1 -x/p (x’-x) 

in the notation of (3). The alternative to the coefficient of the integral having a square 
root zero is a square root singularity, which is unacceptable. 

When (A 3) is substituted back into (A 2) is i t  found that 

Pa = 0 (x 2 l), (A 4) 

w( 1 - 2); {: ((x’)dz’ 
Pa = (0 < x < 1). x (l-X’)”X’-X) 

The total wind drag, D, on the drop is 

Upon multiplying (3) by ( and integrating from x = 0 to L, i t  is found that 

For non-slender drops, 6; and 0; would be replaced by -2  cos6, and -2  cos0,. 
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